

Datenblatt Gasaufbereitung

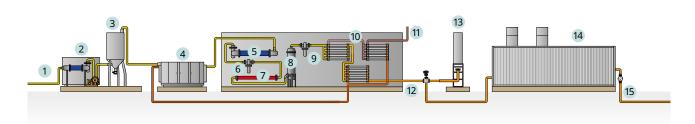
Membrantechnologie

Membrantechnologie

Zukunftsfähige Ressourcenwirtschaft

In Zeiten von Energiewende und Dekarbonisierung spielen die umfassende, zuverlässige Versorgung mit erneuerbarer Energie und die Produktion von regenerativem Treibstoff (bio-LNG, bio-CNG) eine zentrale Rolle. Als integrierte Komplettlösung in Kombination mit einer Kompogas™-Anlage oder als Einzelmodul vervollständigt die Biomethan-Gasaufbereitungstechnologie von Kanadevia Inova die Produktpalette, in der aus Abfall und Biomasse aller Art Energie erzeugt wird. So entsteht auf Basis biogener Rohgase im Aufbereitungsprozess hochreines Biomethan als vielseitig nutzbarer Energieträger.

Vorteile der Biomethan-Technologie


Zur Gasaufbereitung eignen sich Rohgase aus den unterschiedlichsten Quellen wie z. B. der Vergärung kommunaler Grünabfälle, von Bioabfall aus Haushalten oder Biomasse aus der Landwirtschaft. Auch Klär- und Deponiegase lassen sich in Energie umwandeln. Damit wird die Wertschöpfungskette der jeweiligen Anlage erweitert und die Kreislaufwirtschaft gefördert. Abhängig von der Zusammensetzung des Rohgases erfolgt eine

Vorbehandlung. Anschliessend wird im Hauptprozess das im Gasstrom enthaltene CO₂ vom Methan abgetrennt und das so erzeugte Biomethan auf die geforderten Qualitätsparameter konditioniert.

Technische Beschreibung

An Standorten mit günstigen und stabilen Strombezugskosten, schwankenden Rohgasmengen sowie der Forderung nach hohem Übergabedruck präsentiert sich die Membrantechnologie mit einem Gasaufbereitungsvolumen ab 100 Nm³/h als optimale Lösung. In einem ersten Schritt wird das Rohgas vorbehandelt und auf Betriebsdruck verdichtet. Nach Trocknung, Erwärmung und Feinreinigung wird das Gas in die Membranmodule eingeleitet. Die Abscheidung des CO₂ vom Methan erfolgt durch eine selektive Gaspermeation. Das CO₂ permeiert im Vergleich zum Methan schneller durch die Oberfläche der Membranen. Das Methan wird in diesen zurückgehalten und als Produktgas von den Modulen abgezogen. Als hocheffiziente Plug-and-Play-Lösung benötigt diese Verfahrenstechnik keine zusätzlichen Betriebsstoffe wie z.B. Wasser oder Wärme.

Prinzipschema

Vorbehandlung

- 1 Rohgasleitung
- 2 Trocknung und Vorverdichtung
- 3 Entschwefelung
- 4 Hauptverdichtung

Rohgasaufbereitung

- 5 Kühlung und Trocknung
- 6 Koaleszenzfilter
- 7 Gaserwärmung
- 8 Aktivkohle-Filter
- 9 Partikelfilter

10 Membranstufen

- 11 CO₂ zur weiteren Nutzung
- 12 Methan

Energetische Nutzung

- 13 Sicherheitsfackel
- 14 Gaseinspeisung
- 15 Gasversorgungsnetz

Biogas-Gasaufbereitung: M-Serie

		Model S	Model M	Model L
Maximale Aufbereitungskapazität	Nm³/h Biogas	500	1′200	2′000

Technische Daten				
Container		1 x	1 x 40′	
Länge Container	mm	12′192	12′192	12'192 6'058
Breite Container	mm	2'438	2'438	2'438 2'438
Höhe Container	mm	2′896	2'896	2′896 2′896
Aussenaufstellung	m x m	14,4 x 6,7	17,0 x 8,0	17,5 x 18,0
Anschluss RBG	DN	200	300	400
Anschluss BM	DN	40	50	80

Leistungsdaten				
Spannung	V	400		
Frequenz	Hz/Phasen		50/3	
BM-Qualität	Vol% CH ₄		bis zu 98,5	
Eingangsdruck BG ¹⁾	mbar (ü)		50-150	
Betriebsdruck	bar (ü)		11–16	
Ausgangsdruck BM	bar (ü)		1–14,5	
Taupunkt BM ²⁾	°C		≤ −55	
Spezifischer Energiebedarf der Aufbereitung ³⁾	kWh/Nm³ RBG		0,23-0,27	
Spezifischer Energiebedarf der Vorreinigung ³⁾	kWh/Nm³ RBG		0,03	
Spez. Wärmeauskopplung (60°C–80°C)	kWh/Nm³ RBG	0,20	0,15	0,15
Max. Eingangstemperatur Kühlwasser	°C		8	
Max. Ausgangstemperatur Ausgangswasser	°C		2	
Maximale installierte Leistung	kW	230	450	
Wasserbedarf	m³		n.A.	
Abwasser	m³		n.A.	
Designtemperatur 4)	°C		−15 bis +35	
Kondensat	kg/h	50	120	200

Emissionen		
CH₄-Schlupf	%	≤ 0,5
Schalldruckpegel in 1 m	dB(A)	85
Schalldruckpegel in 1 m mit Schallschutz Kompressor	dB(A)	75

¹⁾ optional höher möglich, ²⁾ @ Normbedingungen, ³⁾ Toleranz von ±10 % nach DIN 1945/VDI 2045/ISO 5389. Elelektrischer Verbrauch hängt von Betriebs- und Umweltbedingungen sowie der Gasspezifikation ab. Der Bedarf ist für eine Umgebungstemperatur von 15 °C sowie Standard-Gaseingangsparameter (30 °C, atmosphärischer Druck) angegeben. ⁴⁾ Kondensat bei max. Rohbiogas pro Stunde Abkürzungen: RBG = Rohbiogas, BG = Biogas, BM = Biomethan

Kanadevia Inova AG

Hardturmstrasse 127 8005 Zürich Schweiz T +41 44 277 11 11 info@kanadevia-inova.com www.kanadevia-inova.com